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On the non-unique definition of the current in the Thirring 
model 
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Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, 
Bulgaria 

Received 29 August 1979, in final form 14 July 1980 

Abstract. It is shown that in the Thirring model there exists a more general definition of the 
current than the usual one, which leads to a one-parameter family of renormalised solutions 
of the model. The set of vector currents obtained in this way yields many possible 
quantisations of the model, and in particular a quantisation with a finite renormalisation. It 
is also shown that with such a definition of the current the conformal dimension of the 
two-point function is not fixed. 

1. Introduction 

In a number of papers (Mandelstam 1975, Pogrebkov and Sushko 1975, 1976, 
Hadjiivanov et a1 1979) an exact solution of the renormalised massless quantum 
Thirring model has been considered in the form of an exponential of two massless scalar 
fields. Usually in the literature one finds the exact operator solution of Klaiber (1967), 
although its conformal properties have not been treated. It is known that this solution is 
not unique. In the paper by Kupsch et a1 (1975), for instance, a solution different from 
Klaiber’s has been obtained, and the authors express the opinion that a full set of 
solutions is necessary to make the conformal invariance properties of the Thirring 
model clear. Independently, another solution has been obtained by Dell’Antonio et a1 
(1972), and in the works by Streater and Wilde (1970) and Streater (1974), a 
two-dimensional model is studied which has such a solution in the proper limit. As has 
been shown by Hadjiivanov et a1 (1979), the Thirring model is invariant with respect to 
transformations of the conformal group which are not the standard ones. Therefore its 
solutions are not spinors (nor what are usually called spinors in two-dimensional 
space-time). 

Here it is necessary to stress that in two-dimensional space-time there exist no 
spinors at all, because the Lorentz group is abelian and all its irreducible represen- 
tations are one-dimensional. As a consequence of that fact, the usual spin-statistics 
connection is not valid (see Streater and Wilde (1970), Streater (1974)). Therefore 
objects exist which transform with respect to the Lorentz group as 4i(x)+ 
[(exp A x y 5 ) + I i ( x ) ,  where A is an arbitrary constant. It is clear that the value A = has 
been chosen only in analogy to the four-dimensional case. Even the analogue of the 
free quantised Dirac equation in two-dimensional space-time 

iy”a,&(x) = 0 (1.1) 
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has solutions for which the constant A can take arbitrary values (see Kupsch et ai 
(1975)). 

Remark. The value A = 4 is fixed by the requirement for canonical commutation 
relations between the fields $ ( x ) .  However, as is known, the solutions of the Thirring 
model do not satisfy such commutation relations. As is seen from the works of 
Mandelstam (1975), Pogrebkov and Suchko (1975,1976) and Hadjiivanov et ai (1979), 
the canonical commutators can only be given for the scalar field operators 4 (x) (with 
the help of which $ ( x )  is expressed). For a consistent study of the Thirring model and 
the corresponding free ‘spinor’ field, it is also necessary in the latter case to require 
canonical commutation relations between the fields 4 ( x ) ,  and not between $ ( x ) .  Then 
all the solutions of equation (1.1) corresponding to different values of the constant A 
are equally valid. 

As is known, the solution of the Thirring model is connected with two conserved 
currents (a vector and pseudovector current) which are expressed as gradients of the 
two scalar fields. In a paper by Johnson (1961), a correct definition of the vector current 
has been given corresponding to the particular value of the constant A =$. In the 
present paper we find an analogous definition of the current for the case of arbitrary 
values of A.  It will be seen that for some values of A the Thirring model needs no 
infinite renormalisation. 

We note further that Klaiber’s solution (which is not restricted by the fixed value 
A = 4 either) is constructed in the Hilbert space of the free spinor field, and a substitute 
for the scalar field is defined through a regularisation procedure. The vacuum in this 
space is unique, and it is invariant with respect to the gauge transformations generated 
by the vector and the pseudovector currents of the Thirring model. In particular, the 
vacuum expectation value of the Thirring field is equal to zero, and the matrix structure 
of the two-point function is determined by the matrix structure of the free spinor field 
two-point function. The solutions proposed here are constructed only in the space of 
the scalar field operator states where the Thirring field operator $ ( x )  is expressed in the 
form of an exponential of these fields. In the conformal invariant, consistent field 
theory of the Thirring model which arises with the help of such a construction, a 
spontaneous breakdown of the gauge ys-symmetry takes place. We will discuss this 
problem in detail in 0 3. 

2. The current in the Thirring model 

Let us first write the exact solution of the renormalised massless quantum Thirring 
model obtained by Hadjiivanov et a1 (1979) as an exponeiitial of two massless scalar 
fields: 

r1 and r2 are the Pauli matrices. We also write the non-zero commutators of the field 
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4 ( x )  and its positive- and negative-frequency parts 4*(x):  

[4 ( x ) ,  4(Y 11 = i m x  - Y ), (2.3) 

[4*(x),  4”(Y)I=D*(x-Y).  (2.4) 

The dual field & ( x )  (pseudoscalar) also satisfies equation (2.2). Both fields are 
connected through a linear differential equation: 

a , 4 ( X ) + e p u ~ ” & ( x ) = 0 ,  E,” = -e”,, €01 = -eo1= 1.  (2.5) 

The field &(x)  and its positive- and negative-frequency parts satisfy the same com- 
mutation relations (2.3) and (2.4) and commute with the fields 4 ( x )  and 4*(x)  in the 
following way : 

t d b ) ,  4 ( y ) l =  i&X - Y ) ,  (2.6) 

[d*W, 47y) l=d’(x  - Y ) ,  rd*cx , ,  4*(Y)1 = 0.  (2.7) 

The commutator functions are given in appendix 1. Usually the current in the Thirring 
model has been defined following Johnson (1961). We recall this definition. First of all 
one considers the expressions 

where 
[ i ( x  + € ) Y p $ ( X )  - $ ( x ) Y ; i ( x  - € 1 1 ,  2 (1 /4w) (u2+pz) -1 /2  

(2.9) 
j , b ,  €1 = ( - E  ) 
p = - e ,  2 C€ = 0 

(we are discussing here the renormalised Thirringmodel). Then one obtains the current 
in the form 

J, ( x )  = +[ j ,  ( X I  + & ) I .  (2.10) 

The renormalised Thirring model with such a current leads to solutions of the type (2. l),  
with a and P satisfying 

ap = IT, P -a = (g/27)(a + P I .  (2.11) 

J , ( x )  = (1 /2r) (a  + P ) J , 4 ( X ) .  (2.12) 

The current is expressed with the help of the field c$ (x) as 

From equations (2.11) the constants a and P are uniquely determined. 

and @. Let us write the components of the current explicitly: 

j o ( x )  = -(i/27)(- I)~’/~“{(-- l)-up’w[-a a14 - pa1$] - a a14 +pa,&, 
j l ( x )  = - ( i /2 .rr)(- l )uP~2w{(-1)-ap’2w[-a~14 -pal&] +aa14 -pal&, 

On the other hand it is not difficult to calculate the expressions (2.8) without fixing a 

(2.13) 

To(x) = (l/IT)aa1&, T l b )  = u/T)@al4 ,  (2.14) 

1Ul2 = 1/27.  2 -(a*+p2)/4” where we have set (-l)‘ = eiwa and (F ) 
It is readily seen that equations (2.13) and (2.14) give a one-to-one correspondence 

between j , ( x )  and f , ( x )  on the one hand and a&c$, pa14 and a&&, pal$ on the other. 
Therefore, without fixing a and P, one can solve,equations (2.13) and (2.14) with 
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respect to a&(x) and a,r$(x) and construct the current with the help of equation (2.12), 
considering the latter equation as its definition. We write the result explicitly: 

B L Aneva,  S G Mikhov and D T Stoyanov 

(1/2.rr)(a + P P 0 4  
E J~(x) 

= 4$0 ( x  ) + ii (- 1 ) “[ io( x ) - jl ( x  )] - 4i (- 1) j o ( x )  + jl (x  )I}, (2.1 5) 

= 4{ f1 ( x  ) - t i  (- 1) “[ jO(x ) - jl ( x  )] - t i  (- 1 ) jo(x ) + jl (x  )I}. (2.1 6) 

Thus, if the current of the Thirring model is determined with the help of equations 
(2.15) and (2.16), there remains one relation between the constants a and 6: 

(2.17) 

The definitions (2.15) and (2.16) differ from the Johnson one and coincide with it if 
ap = T. Equation (2.17) does not determine the constants a and P uniquely, and 
therefore equation (2.1) represents a one-parameter family of renormalised solutions 
of the Thirring model. As is known, the factor ( - E * ) - ( ~ ~ + ~ * ) / ~ ” + ~ / ~  ( E + O )  has the 
meaning of a renormalisation constant for the field operators. More precisely, the 
renormalised fields $ ( x )  and the unrenormalised ones q50(x) are related through 

P -a = (g/2.rr)(a + P I .  

(2.18) 

As far as there exists only one relation (2.17) between a and P, then equation (2.18) 
provides the Thirring model with a one-parameter family of renormalisations. For 
instance, the constant a can be chosen as a parameter. 

Any solution belonging to the family for a given a can be expressed with the help of 
the scalar fields 4 ( x )  and r$(x) according to equatidn (2.1), and therefore for any cy the 
Thirring equation is invariant with respect to the representations of the conformal 
group with generators given in appendix 2. The Thirring fields $ ( x ,  a )  have no fixed 
spin, and therefore the spin-statistics relation is not uniquely determined. At space-like 
separations commutation or anticommutation relations hold if the spin is integer or 
half -integer respectively. The problem of local commutativity of these solutions is 
discussed by Hadjiivanov and Stoyanov (1979). 

We point out that the two-point function of the fields $ ( x )  has no fixed conformal 
dimension, because it depends on cy and hence on the chosen renormalisation. 
Changing the value of the parameter a, one goes from one solution to another, i.e. 
roughly speaking from one dimension to another. For instance, the transformation 

(2.19) $(x ,  a)+ :exp{i(x - l)[Prsr$(x)-a~(X)I)$(X a ) :  

reduces to a multiplication of a and P by a factor x ,  

44x9 a ) +  $(x,  x a ) ,  (2.20) 

which does not alter equation (2.17). Therefore the whole family of renormalised 
Thirring equations remains invariant with respect to the transformation (2.19). 

We show now that the expressions for the current components (2.15) and (2.16) can 
be written in a manifestly covariant form. For this purpose we introduce the quantities 

(2.21) T,(x, E )  =l[V1(E)(&Y - E & ” ) +  V 2 ( E ) ( & ’ + % Y ) l j y ( X ,  €1 
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where ].,,(x, E )  is given by equation (2.9) (CY and P are arbitrary), and VI(€) and V2(.5) are 

It is easily verified that 

€ O X O  
€1-0 

lim T,(x, E )  = ~ { ( - 1 ) ~ “ p ’ 2 ” [ o ( ~ ) + j l ( x ) ] + ( - l ) u p ’ 2 ~ ~ r r  [io(x)-i1(x)I~= T,(x), 

lim T,(x,E)=TW(x)=T,(x). 
S O = O  
S’+O 

Therefore the current (2.15) and (2.16) can be written in a covariant form: 

(2.22) 

(2.23) 

3. Conformal invariant two-point functions 

In this section we discuss the conformal invariant two-point functions of the fields t,b(x). 
Consider the fields t,bl(x) and t,b2(x) (with parameters o l ,  P1 and a2 ,  Pz  respectively), 
which transform according to the representation of the conformal group given in 
appendix 2. The two-point function is 

Aij(x) = (OIt,b! ( x ) J f  (())IO> (3.1) 
(3 is the Dirac conjugate field). The Lorentz invariance condition equation (A2.2) 
leads to the equation 

(M,u A)ij 

(3.2) 
Analogously, using equation (A2.3), one obtains the scale invariance condition of the 
two-point function 

-i(x,a, - xua,)Aij(x) -I- ( i /2 rkr rV~zPi( rsA) i j  - ( ~ / ~ ~ ~ ) E , ~ C Y I P Z ( A Y S ) ~ ~  = 0.  

(DA)&) = ixc”a,Aij(x) + ( ~ / ~ ‘ ~ ~ ) C Y I C Y ~ A ~ ~ ( X )  - (i/2r)P1P2(r5Ar5)ii = 0. (3.3) 
Further, equation (A2.4) gives the invariance condition with respect to the special 
conformal transformations = 0. However, this condition does not lead to new 
equations for the function Aij(x), but is rather an identity: 

(Kw A)ij(x = x (M,uA)ij(x) - x ,  (DA)ij(x). (3.4) 
It is not difficult to solve the system of equations (3.2) and (3.3). One makes the 
substitution 

v = x - / x + ,  Aij(x) = Aij(u, v ) ,  (3.5) + -  u = x  x ,  
1 where xc=xo-iO+xl ,x-=xo-iO-x . Then equations (3.2) and (3.3) take a very 

simple form: 

(3.7) 
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In obtaining the last equations we made use of the concrete realisation of the y5-matrix, 
namely (&I = 

A ~ ~ ( ~ )  = ~ ~ ~ ( - ~ 2 ~ 2  + ~ O ~ O ) ( * / ~ " ) [ P I P Z ( - ' ) ~ + ~ - U ~ O ~ ~ I  

The final result is 

where Hii are some integration constants. The functions (3.8) are different from zero 
for any a l ,P1 and az, P 2 .  Thus the two-point functions of the Thirring fields are 
different from zero for different renormalisation constants. Note that functions of the 
kind 

do not vanish either. The explicit expression for the latter is obtained from (3.2) after 
substituting az+ -az. The fact that there exists a two-point function of the fields $: ( x )  
and 4; ( x )  actually means that for fixed a and P the algebra (A2.1)-(A2.4) determines a 
series of irreducible representations due to the continuous spectrum of the operators L 
and S. The sets of irreducible representations contained in two series (with different a 
and P )  evidently coincide, which reflects in the non-vanishing two-point function of the 
fields 4; ( x )  and +;(O). 

Obviously Aij(x) are homogeneous functions of x ,  but the degree of homogeneity 
depends on the value of the indices i and j .  Namely, the diagonal terms of the matrix 
Aii(x) have one degree of homogeneity -(1/27r)(P1P2 -- alaz) ,  and the antidiagonal 
have another one, -(1/27r)(P1/32 + alaz).  Nevertheless the two-point function of the 
field + ( x )  is conformal invariant. The presence of the diagonal term in the two-point 
function leads to the conclusion that in the quantum theory of the Thirring model a 
spontaneous breakdown of a symmetry should take place. In order to verify the 
above-mentioned consideration, let us perform the y 5 -  gauge transformation with the 
generator being the pseudo-charge d. (Consider for simplicity the case a1 = a2 and 

$ ( x )  + eiAY54(x), 4 ( x  ) + 4 ( x  ), cb"(x) + cb"(x), (3.10) 
P1 = Pz.) 

where A is a numerical parameter, and y5 = yoy l .  
Obviously, the equation of the Thirring model 

is invariant with respect to this transformation. If the vacuum state 10) was supposed to 
be invariant too, then the function Aii(x) would satisfy the equation 

A i i ( x )  = [eiAY5A(x) eiAv5]ii (3.12) 

and in particular for the diagonal terms (taking into account that y5 is also diagonal): 

Hence it follows that &(x) = 0, which is a contradiction to equation (3.8). Therefore 
the vacuum cannot be invariant with respect to the symmetry (3.10), which means that 
in the quantum Thirring model the y5-symmetry is spontaneously broken. 
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Appendix 1. 

The following commutation functions have been used throughout the paper: 

D ( X )  = - -$E(xo)e(x2) ,  

D’(x) = ~ ( 1 / 4 ~ )  ln(-~*x2*iOx0),  

d ( x )  = -$&)e ( -2 ) ,  

D + ( x )  + D - ( x )  = iD(x),  

d + ( x )  + d - ( x )  = id (x ) ,  

Appendix 2. 

We write down the commutation relations of the ‘spinor’ Thirring field $(x) with the 
generators of the conformal group representations. 

where (Y and p are arbitrary parameters, taking continuous values and 

s = (1/2J\/2.rr)[bC(0)+b-(0)], L = (1/2J\/2.rr)[a+(O)+a-(o)]. 

The constant operators a*(O) and b’(0) are defined by Hadjiivanov et a1 (1979) and 
their commutation relations with the field $(x) are 

[a”(O), $ ( X I 1  = T(i4J2.rr)$(x), [b“, $(x)l= ( i P / J ~ ) r s $ ( x ) .  

The two conserved charges have also been found there in terms of these operators: 

m 

0 = I-, dxl  ao4 (x) = $id?r[a-(O) - aC(0)],  

d =I-, dx’ ao$(x) = -$iJ?r[b-(O) - b+(0)].  
m 
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